

21^{éme} Journée d'Actualités en Ventilation Artificielle

22 Novembre 2014 Créteil

L'eau et les bactéries dans le poumon

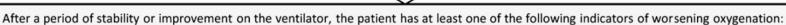
Un cocktail explosif?

Armand Mekontso Dessap Réanimation médicale Hôpital Henri Mondor – Créteil, France

PAVM: infection nosocomiale la plus fréquente

Site of infection	
Respiratory tract	4503 (63.5)
Abdominal	1392 (19.6)
Bloodstream	1071 (15.1)
Renal/urinary tract	1011 (14.3)
Skin	467 (6.6)
Catheter-related	332 (4.7)
CNS	208 (2.9)
Others	540 (7.6)

Morbi-mortalité PAVM

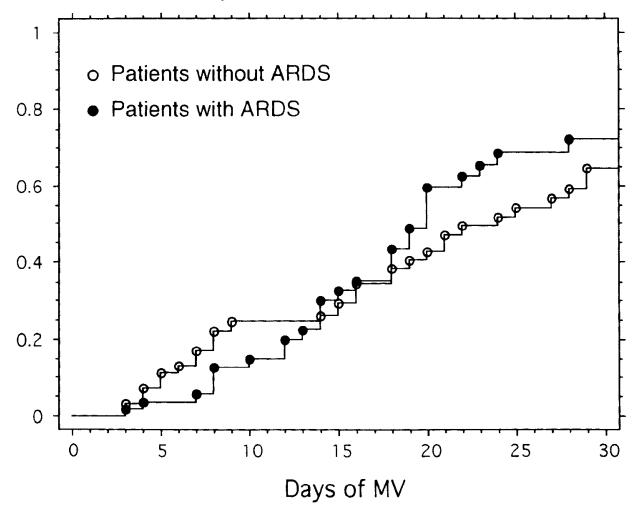

	Total number of patients	RRR VAP (95% CI)	RRR mortality (95% CI)	Attributable mortality (95% CI*)
All studies	6284	0·30 (0·21 to 0·38)	0.04 (-0.06 to 0.12)	13% (-0·14 to 0·38)
Trauma	1159	0·40 (0·25 to 0·52)	-0.08 (-0.45 to 0.19)	0% (-1·06 to 0·45)
Medical	3314	0·32 (0·17 to 0·43)	-0.01 (-0.14 to 0.11)	0% (-0·41 to 0·29)
Surgical	1560	0.26 (0.04 to 0.43)	0·18 (-0·01 to 0·33)	69% (0.08 to 3.60)
APACHE <20				
Unadjusted	1588	0·31 (0·10 to 0·47)	0.00 (-0.26 to 0.20)	0% (-0·94 to 0·72)
Adjusted†	1521	0·34 (0·14 to 0·49)	-0.03 (-0.31 to 0.18)	0% (-0·97 to 0·77)
APACHE 20-29	1176	0.28 (0.05 to 0.45)	0·10 (-0·12 to 0·27)	36% (-0·29 to 1·51)
APACHE≥30	359	0.47 (0.08 to 0.70)	-0.03 (-0.39 to 0.23)	0% (-0·95 to 0·37)
SAPS 2 <35	364	0.45 (0.08 to 0.67)	-0·23 (-1·18 to 0·30)	0% (-4·48 to 0·82)
SAPS 2 35-58	723	0·38 (0·11 to 0·56)	0·18 (-0·07 to 0·38)	47% (-0·13 to 1·08)
SAPS 2 ≥58	377	0·35 (-0·05 to 0·60)	-0·12 (-0·50 to 0·16)	0% (-2·27 to 0·60)

RRR=relative risk reduction. VAP=ventilator–associated pneumonia. APACHE=acute physiology and chronic health evaluation. SAPS 2=simplified acute physiology score.*95% CI attributable mortality as estimated with bootstrap analyses. \dagger Adjusted for trauma .

Table 2: Results of primary analysis (random effects model)

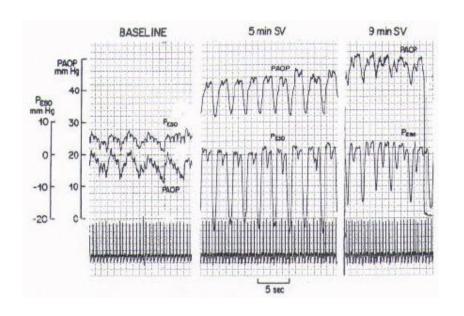
VAC

Patient has a baseline period of stability or improvement on the ventilator, defined by ≥ 2 calendar days of stable or decreasing daily minimum FiO₂ or PEEP values. The baseline period is defined as the two calendar days immediately preceding the first day of increased daily minimum PEEP or FiO₂.


- 1) Minimum daily FiO₂ values increase ≥ 0.20 (20 points) over the daily minimum FiO₂ in the preceding 2 calendar days (the baseline period), for ≥ 2 calendar days
- 2) Minimum daily PEEP values increase ≥ 3 cmH₂O over the daily minimum PEEP in the preceding 2 calendar days (the baseline period), for ≥ 2 calendar days

Ventilator-Associated Condition (VAC)

PAVM et œdème pulmonaire lésionnel



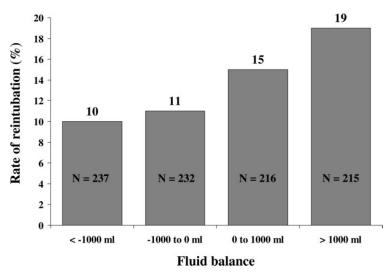
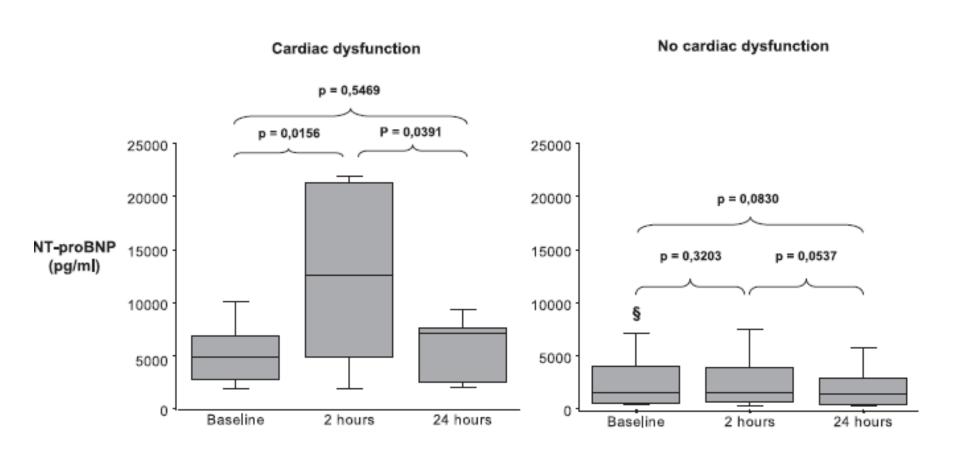
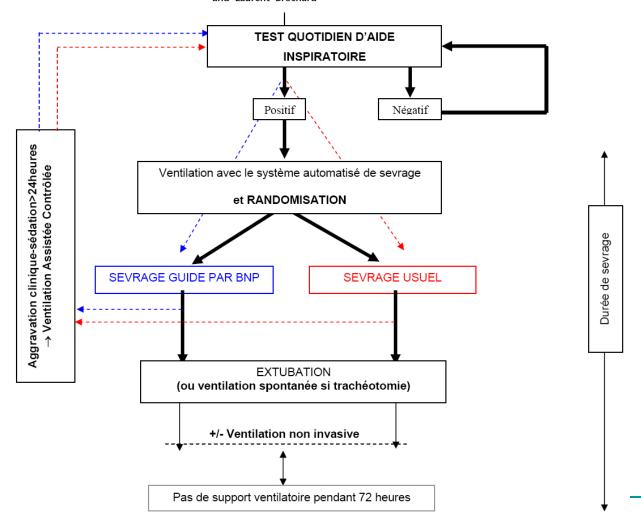

OAP cardiogénique et pneumonies

Table 3. Relation between Cardiac and Noncardiac Complications


Association with Noncardiac Complications	Odds Ratio (95% Confidence Interval)
Any cardiac complication, unadjusted	6.6 (4.3–10.2)
Any cardiac complication*	6.4 (3.9–10.6)
Ventricular fibrillation/ cardiac arrest/complete heart block [†]	9.3 (2.9–29.5)
Myocardial infarctions [‡]	4.5 (2.2–9.3)
Pulmonary edema [§]	10.6 (5.0–22.2)

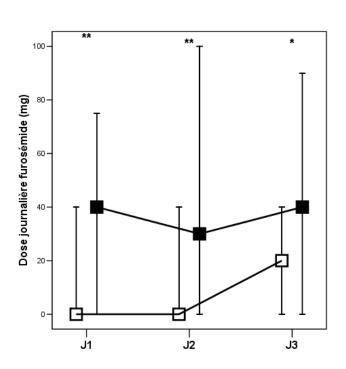
Cœur et sevrage

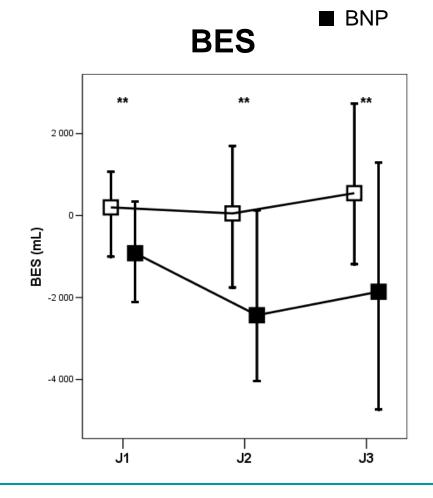
NT-pro BNP et sevrage difficile



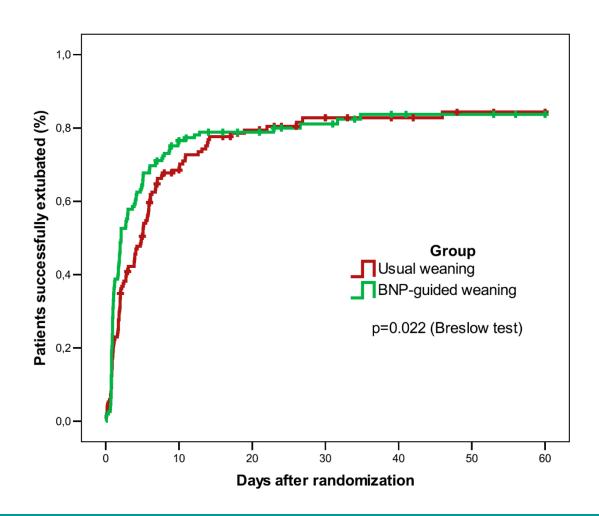
Natriuretic Peptide-driven Fluid Management during Ventilator Weaning

A Randomized Controlled Trial


Armand Mekontso Dessap^{1,2,3}, Ferran Roche-Campo^{1,4}, Achille Kouatchet⁵, Vinko Tomicic⁶, Gaetan Beduneau⁷, Romain Sonneville⁸, Belen Cabello⁴, Samir Jaber⁹, Elie Azoulay¹⁰, Diego Castanares-Zapatero¹¹, Jerome Devaquet¹², François Lellouche¹³, Sandrine Katsahian¹⁴, and Laurent Brochard^{1,2,3,15}

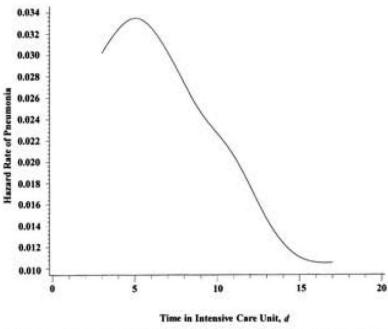


Résultats BMW

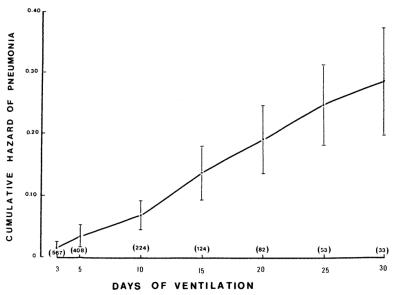

□ Usuel

Diurétiques

Résultats BMW


Complications respiratoires

	Groupe usuel	Groupe BNP	
	(n=152)	(n=152)	р
Recours VAC (aggravation respiratoire)	66 (43%)	43 (28%)	0.004
PAVM	27 (18%)	14 (9%)	0.029
VNI post extubation	49/138 (36%)	53/142 (37%)	0.752
Trachéotomie	13 (9%)	21 (14%)	0.145
VM prolongée (>14 jours)	20 (13%)	20 (13%)	>0.999


HYPOTHÈSES

- OAP pris pour PAVM?
 - ⇒ diagnostic sur cultures quantitatives (PDP, LBA)
- Risque compétitif?

Incidence PAVM

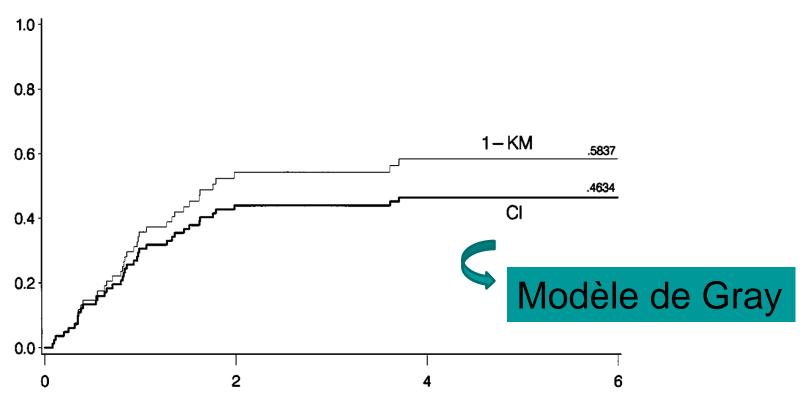
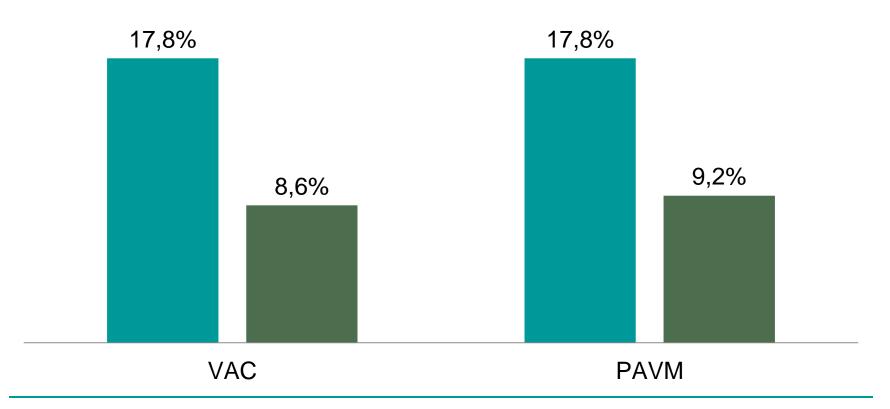


Figure 2. Hazard rate for ventilator-associated pneumonia during the stay in the intensive care unit. The hazard function presents the conditional probability of ventilator-associated pneumonia in the next day, given that a patient is event free. Estimation of the hazard function shows the event rate per day over the duration of ventilation.

j. 1. Cumulative hazard of ventilator-associated pneumonia in 567 Patients. Data points are mean values (± 1 SD). Figures in parentheses along the abscissa refe the number of patients being followed at the start of the subsequent interval.

Risques compétitifs

The complement of the KM estimate and the CI estimate of disease progression among 82 patients with head and neck cancer randomized to receive an experimental treatment


PAVM durant sevrage

Ventilator-Associated Pneumonia During Weaning From Mechanical Ventilation

Role of Fluid Management

Armand Mekontso Dessap, MD, PhD; Sandrine Katsahian, MD; Ferran Roche-Campo, MD, PhD; Hugo Varet, PhD; Achille Kouatchet, MD; Vinko Tomicic, MD; Gaetan Beduneau, MD; Romain Sonneville, MD, PhD; Samir Jaber, MD, PhD; Michael Darmon, MD, PhD; Diego Castanares-Zapatero, MD; Laurent Brochard, MD; and Christian Brun-Buisson, MD

Pathogènes impliqués

TABLE 3 Microorganisms Responsible for Ventilator-Associated Pneumonia During Weaning

Pathogen	Usual Care Group (n = 27)	Interventional Group (n = 14)
Staphylococcus species	2 (7.4)	1 (7.1)
Streptococcus species	4 (14.8)	1 (7.1)
Enterobacteriaceae	10 (37.0)	6 (42.9)
Nonfermentative gram-negative bacilli	13 (48.1)	5 (35.7)
Other gram-negative bacteria	0 (0.0)	1 (7.1)
Polymicrobiala	7 (25.9)	6 (42.9)

Impact des PAVM

TABLE 4] Main Outcomes of Patients With or Without VAP During Weaning

	VAP		
Outcomes	No (n = 263)	Yes (n = 41)	<i>P</i> Value
Time to successful extubation, h	43.9 (20.7-117.3)	141.6 (49.1-330.9)	<.0001
Ventilator-free days from randomization to day 14, d	11.9 (6.9-13.1)	1.4 (0.0-11.2)	<.0001
ICU length of stay,a d	7.0 (4.0-14.0)	15.0 (9.0-47.0)	<.0001
ICU survivors length of stay $(n = 267)$, a d	7.0 (4.0-12.5)	15.0 (9.0-51.5)	<.0001
Hospital length of stay, ^a d	22.5 (13.8-43.0)	48.0 (17.0-60.0)	.003
Hospital survivors length of stay $(n = 258)$, a d	23.0 (14.0-46.0)	59.0 (21.5-60.0)	.001
ICU mortality, ^b No. (%)	30 (11.4)	7 (17.1)	.31
Hospital mortality, No. (%)	39 (14.8)	7 (17.1)	.71

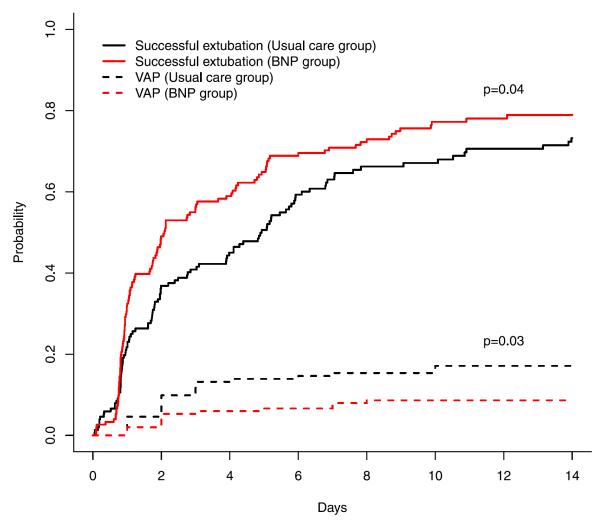
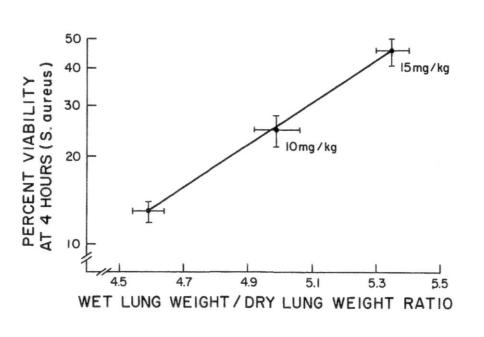
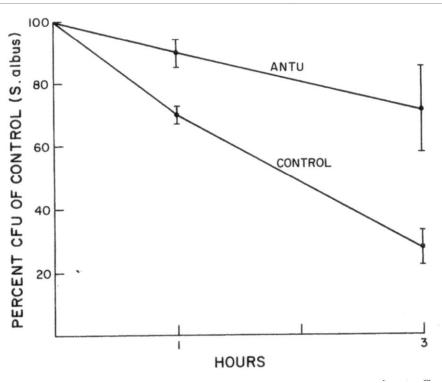


Figure 1 – Cumulative incidence function of successful extubation (bold lines) and VAP (dotted lines) during the first 14 d following randomization in patients managed according to the interventional fluid-management strategy (red) or according to usual care (black). BNP = B-type natriuretic peptide; VAP = VAP =

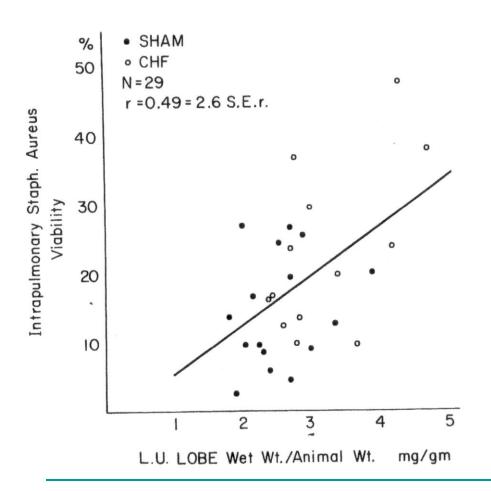
Importance du pathogène?

TABLE 3 Microorganisms Responsible for Ventilator-Associated Pneumonia During Weaning


	Pathogen	Usual Care Group (n = 27)	Interventional Group (n = 14)
•	Staphylococcus species	2 (7.4)	1 (7.1)
	Streptococcus species	4 (14.8)	1 (7.1)
	Enterobacteriaceae	10 (37.0)	6 (42.9)
	Nonfermentative gram-negative bacilli	13 (48.1)	5 (35.7)
	Other gram-negative bacteria	0 (0.0)	1 (7.1)
	Polymicrobial ^a	7 (25.9)	6 (42.9)


Eau, réservoir de Pyo

- Douches
- Sterilisateurs
- Humidificateurs
- Robinets
- Eviers
- Nutrition parentérale
- Eau minérale....


Impact de l'oedème pulmonaire sur la virulence bactérienne ?

Susceptibilité du poumon œdémateux aux infections

Altération de la bactéricidie des macrophages alvéolaires

- Anomalies morpho
- Mécanisme peu clair
 - Déplétion macrophagique
 - Hypoxie ?
 - Non reversé par O2 pur
 - Métabolisme O2 conservé
 - Déplétion en surfactant ?
 - Facteur inhibiteur dans la liquide alvéolaire ?

Susceptibilité du poumon œdémateux aux infections

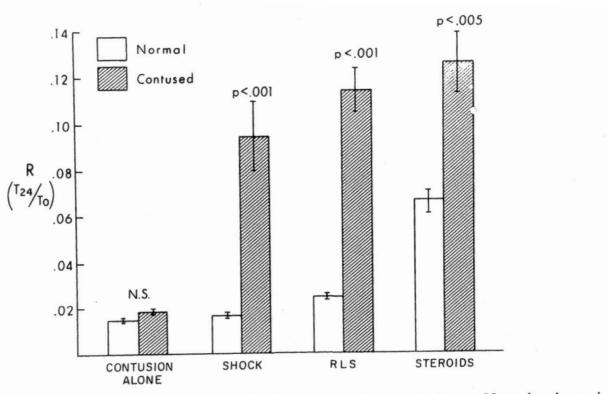


Fig. 2. The effect of various treatment models on the clearance of S. aureus is shown. Note that bacterial clearance is the same for contused and noncontused segments with isolated pulmonary contusion.

Mesures de protection PAVM

L'hygiène des mains et le port de gants à usage unique et non stériles est obligatoire avant chaque soin respiratoire.

La sonde gastrique se met uniquement par la bouche

Cette position doit être maintenue la plus son

compris pendant le transport, la nuit, la toilette.

- 1. Effectuer une hygiène des mains correcte
- 2. Respector les kolements
- 3. Prendre les précoutions adéquates avant l'intubation
- 4. Limiter les déconnections de circuit ou minimum.
- 5. Mettre la sonde gastrique par la bouche
- 6. Surveiller régulièrement la state gastrique
- 7. Faire une aspiration naso-buccale et un soins de bouche au moins x 6/3
- 6. Ne pas faire d'aspiration trachéale systématique
- 9. Élever la tête du lit à 30-45"
- 10. Régler la pression de genflage du ballonnet à 20-30 cmH2O
- 11. Respecter les mesures préventives avant et après transport
- 12. Prévenir les oute-extubations et les extubations accidentalles

SURVEILLANCE DE LA NUTRUTION ENTERALE BUT: EVITER LA SURDISTENTION GASTRIQU

ure du résidu gastrique: 6 fois/j JO-J4 puis 2 fois/j à partir de J5

Sonde d'intubation correctement fixée

Conclusions

 La PAVM a une morbidité significative au cours du sevrage de la ventilation mécanique

- Une stratégie restrictive de gestion des fluides:
 - accélère le sevrage de la ventilation artificielle
 - réduit les complications associées à la ventilation mécanique y compris les PAVM
 - à tester au sein des mesures de protection de la PAVM?

Merci!

- CHU Mondor, Créteil, France
 - Dr Roche Campo
- CHU Angers, France
 - Dr Kouatchet
- Clinica Alemana, Santiago, Chile
 - Dr Tomicic
- CHU Rouen, France
 - Dr Beduneau
- CHU Bichat, Paris, France
 - Dr Sonneville
- Hospital Sant Pau, Barcelone, Espagne
 - Dr Cabello, Dr Roche Campo
- CHU Montpellier, France
 - Pr Jaber
- CHU Saint-Louis, Paris, France
 - Dr Darmon, Pr Azoulay
- Hôpital Saint Luc, Bruxelles, Belgique
 - Dr Castaranes