JAVA Créteil 1 décembre 2019

Bicarbonates pour l'acidose : BICAR-ICU

Samir JABER

Department of Critical Care Medicine and Anesthesiology (DAR B) Saint Eloi University Hospital and Montpellier School of Medicine Clinical and experimental research unit = INSERM U1046 80 Avenue Augustin Fliche; 34295 Montpellier. FRANCE

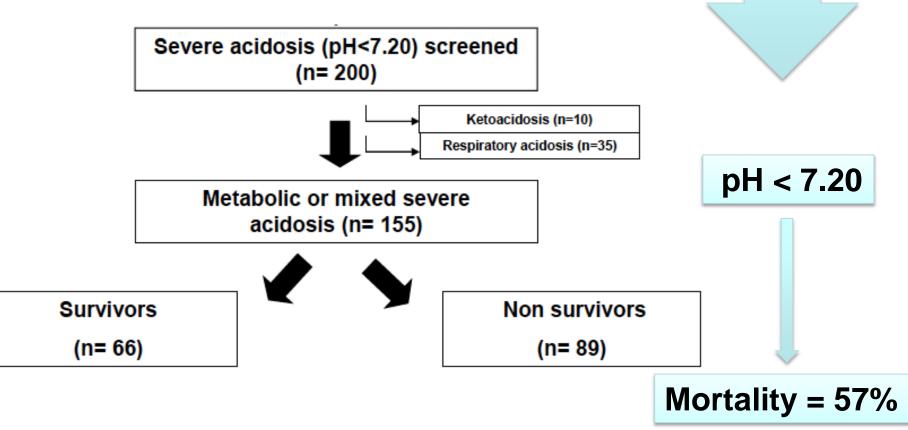
Consultants with honorarium

- Dräger
- Fisher-Paykel
- Xenios
- Baxter

Background

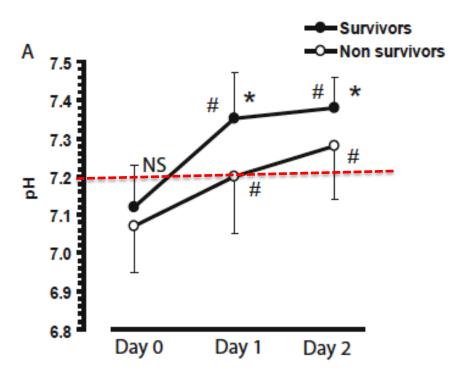
Severe Acidosis in ICU :

- Frequent (15-40%)
- Worse outcome
- Mortality up to 60%
- Sodium bicarbonate infusion to treat severe metabolic acidosis is controversial.

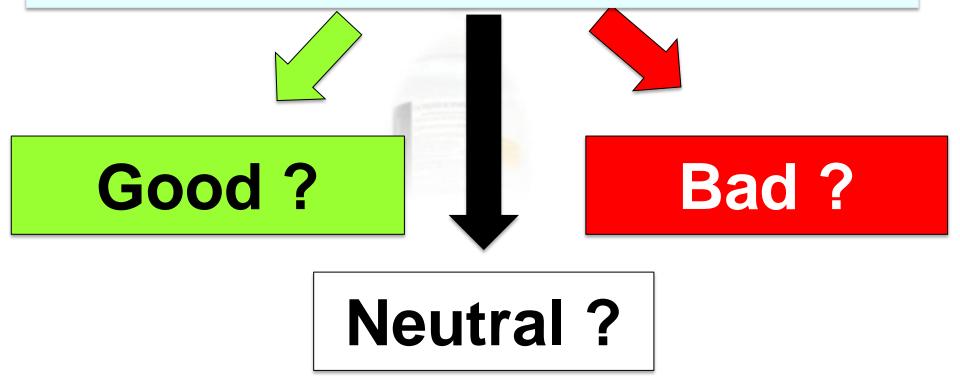

Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. a prospective, multiple-center study

Boris Jung¹, Thomas Rimmele², Charlotte Le Goff², Gérald Chanques¹, Philippe Corne³, Olivier Jonquet³, Laurent Muller⁴, Jean-Yves Lefrant⁴, Christophe Guervilly⁵, Laurent Papazian⁵, Bernard Allaouchiche² and Samir Jaber^{1*}, for The AzuRea Group

Jung et al, Crit Care 2011


Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. a prospective, multiple-center study C CRITICAL CARE 2011

Boris Jung¹, Thomas Rimmele², Charlotte Le Goff², Gérald Chanques¹, Philippe Corne³, Olivier Jonquet³, Laurent Muller⁴, Jean-Yves Lefrant⁴, Christophe Guervilly⁵, Laurent Papazian⁵, Bernard Allaouchiche² and Samir Jaber^{1*}, for The AzuRea Group


Severe Acidemia is bad !

Persistent acidosis has been associated with poor prognosis

Sodium bicarbonate infusion to treat severe metabolic acidosis is controversial.

Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012

« The effect of bicarbonate administration on hemodynamics and vasopressor requirements at lower pH, ... is unknown.

« No studies have examined the effect of bicarbonate administration on outcomes »

Dellinger et al; Intensive Care Med. 2013 Feb:165-228

Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med <u>2017</u>;43(3):304–77

RCT ?

The lack of high-level evidence leaves ICU clinicians uncertain whether bicarbonate infusion is beneficial, ineffective, or indeed harmful

Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial

Samir Jaber, Catherine Paugam, Emmanuel Futier, Jean-Yves Lefrant, Sigismond Lasocki, Thomas Lescot, Julien Pottecher, Alexandre Demoule, Martine Ferrandière, Karim Asehnoune, Jean Dellamonica, Lionel Velly, Paër-Sélim Abback, Audrey de Jong, Vincent Brunot, Fouad Belafia, Antoine Roquilly, Gérald Chanques, Laurent Muller, Jean-Michel Constantin, Helena Bertet, Kada Klouche, Nicolas Molinari, Boris Jung, for the BICAR-ICU Study Group*

LANCET 2018

Funding Support: This is an investigator-initiated trial funded by the French Ministry of Health (Programme Hospitalier de Recherche Clinique Inter Régional 2013) and the Societe Française d'Anesthesie Réanimation (**SFAR**). The sponsor was Montpellier University Hospital. The funding bodies had no role in study design, data collection, analysis, or interpretation, or writing of the manuscript.

AIM OF THE STUDY

To determine if Sodium Bicarbonate has an impact on the prognosis of severly acidotic patients in the ICU

Hypothesis: Bicarbonate will decrease

- D-28 mortality, or
- The number of patients presenting at least one organ failure at D7 as defined by a SOFA > 2

SECONDARY ENDPOINTS

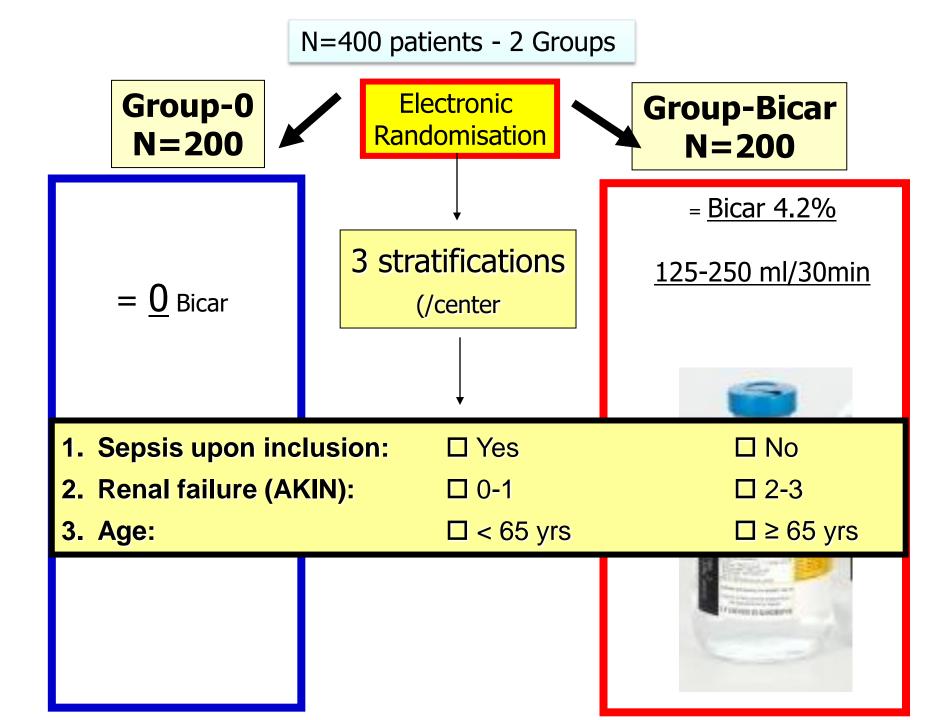
- 1. SOFA Score: D0, D1, D2, D5, D7
- 2. AKIN Score: D0, D1, D2, D5, D7
- **3. RRT** : yes/no from D1 to D28
- 4. MV (either invasive or NIV): yes/no from D1 to D28
- 5. Vasopressors: yes/no from D1 to D28
- 6. Fluid loading: D0, D1, D2, D5
- 7. Acid-base analysis (ABG):
 - 1. D0 to D2: every 8h
 - 2. D3 to D5: every 24h
- 8. Electrolytes disturbances (including calcemia)
 - 1. D0 to D2: every 8h
 - 2. D3 to D5: every 24h
- 9. Nosocomial infections: up to D28 or ICU discharge
- **10. ICU free-days:** up to D28 or ICU discharge
- 11. Hospital free-days: up to D28 or ICU discharge
- 12. Survival at D28: yes/no

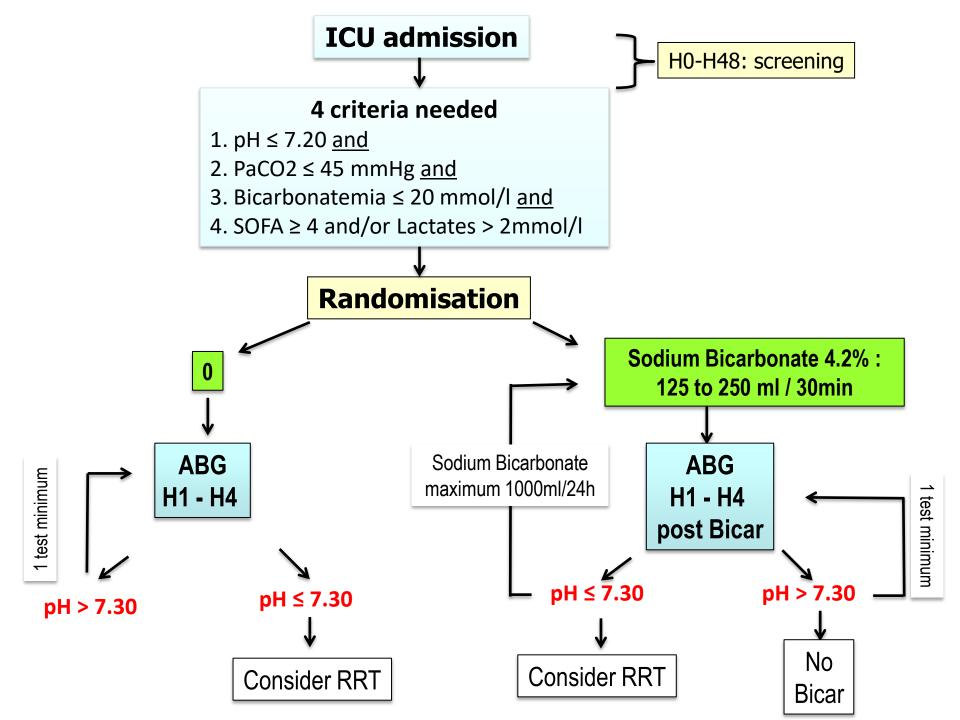
DESIGN OF THE STUDY

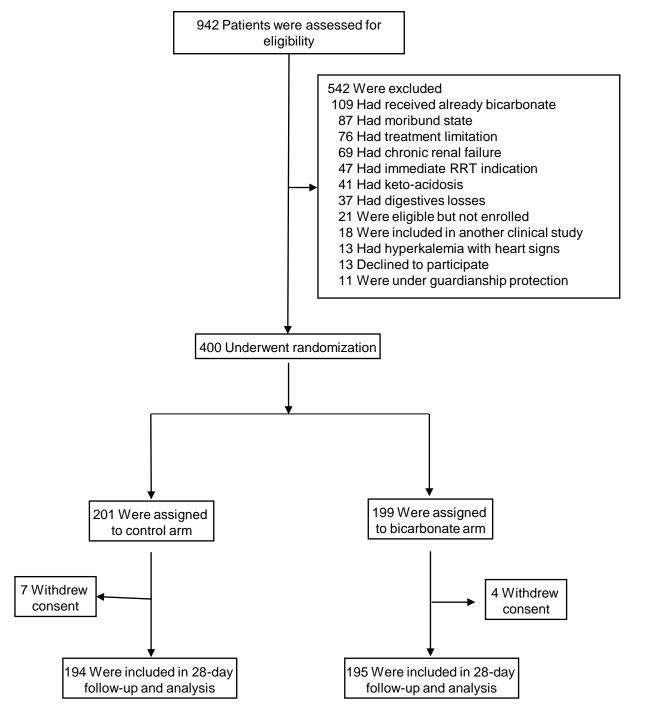
- RCT
- Multicenter (n=26)
- Stratified, two-arm unblinded parallel-arms study
- Stratification
- Intention To Treat analysis (n=400)

INCLUSION CRITERIA

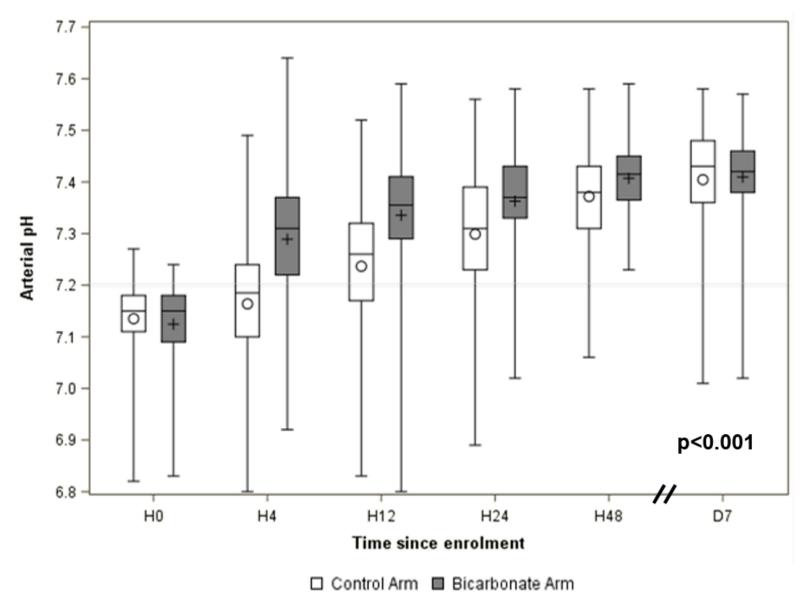
Within 48h following ICU admission (4 criteria must be present):

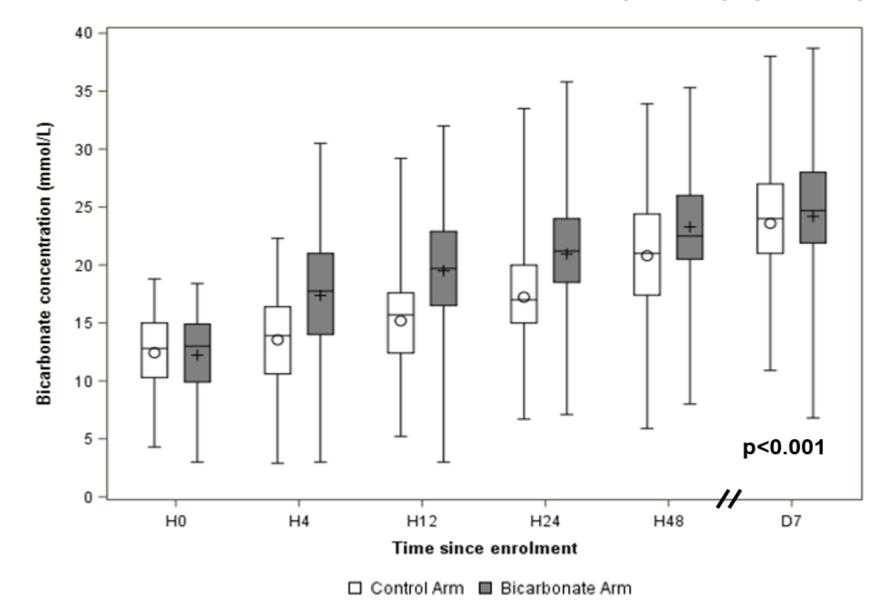

- 1. pH ≤ 7.20
- 2. PaCO2 \leq 45 mmHg
- 3. Bicarbonatemia ≤ 20 mmol/l
- 4. $SOFA_{(total)} \ge 4$ and/or lactatemia > 2mmol/l

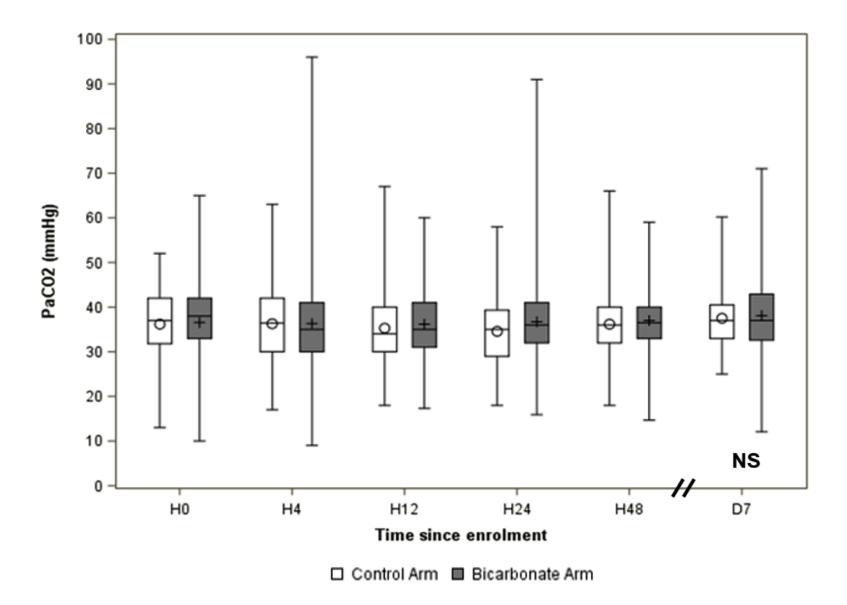

NON INCLUSION CRITERIA


1. Bicarbonate loss

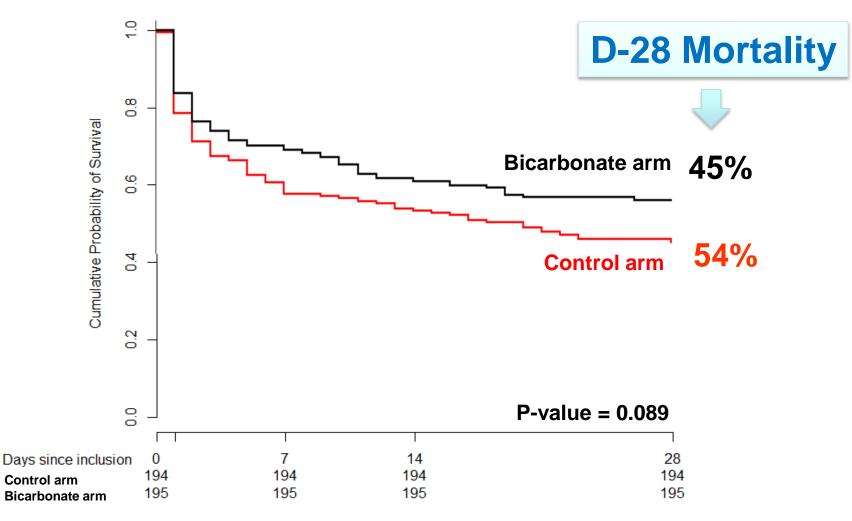
(profuse diarrhoea, ileostomy>1000ml/24h, proven tubular acidosis)

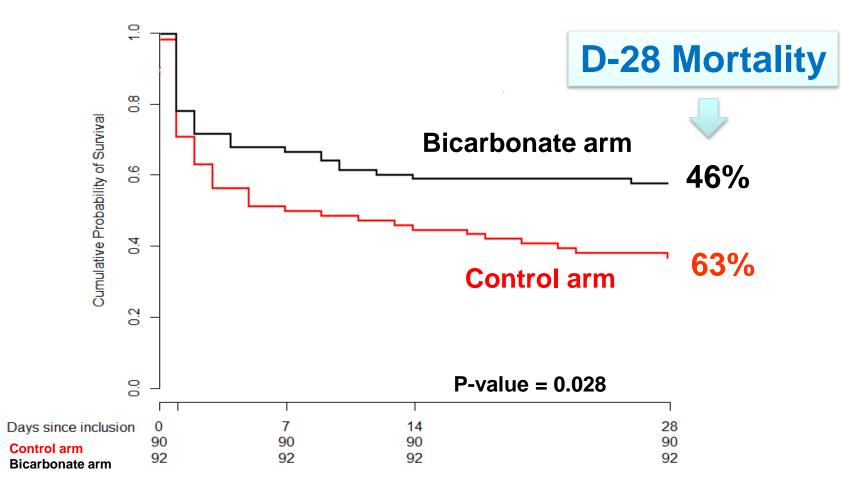

- 2. Chronic Kidney failure needing RRT
- 3. Stage IV Chronic Kidney Insufficiency (Clairance <30ml/min)
- 4. Acidoketosis / Acids poisoning
- 5. Withdrawal of care / death in the next 48h
- 6. Tutelage
- 7. No health insurance
- 8. Pregnancy
- 9. Consent refusal




Arterial pH level in patients in the control and in the bicarbonate arms at baseline and after enrolment (overall population)

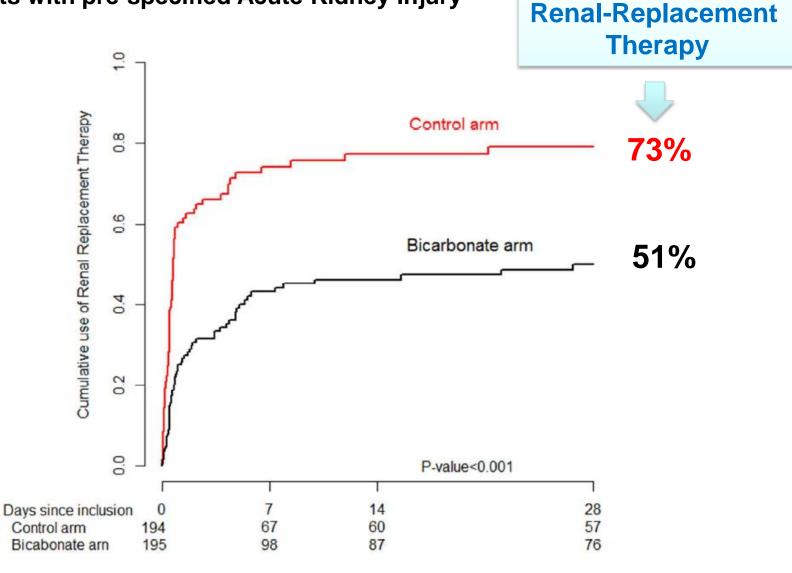
Arterial bicarbonate level in patients in the control and in the bicarbonate arms at baseline and after enrolment (overall population).


PaCO₂ level in patients in the control and in the bicarbonate arms at baseline and after enrolment (overall population


Outcome	Control Arm (N = 194)	Bicarbonate Arm (N = 195)	P value
Primary outcome — no. (%)			
Overall population (n=389)			
Composite outcome	138 (71)	128 (66)	0.244
Day 28 mortality	104 (54)	87 (45)	0.076
At least one organ failure at day 7	50 (46)	55 (43)	0.661

Patients with AKIN 2-3 † (n=182)			
Composite outcome	74/90 (82)	64/92 (70)	0.046
Day 28 mortality	57/90 (63)	42/92 (46)	0.017
At least one organ failure at day 7	74/90 (82)	61/92 (66)	0.014

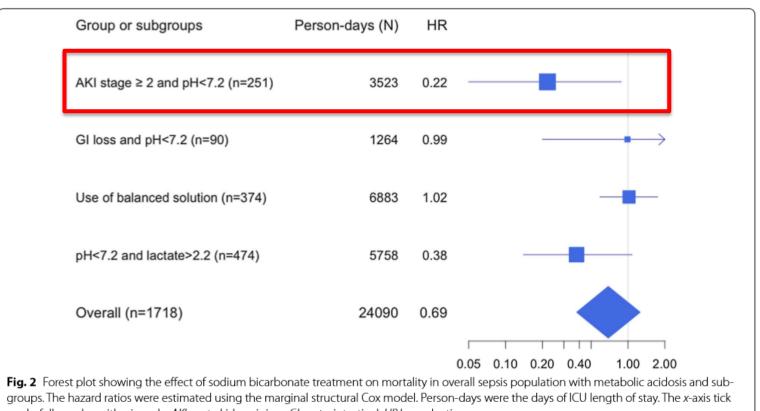
A. Time to Death in Overall Patients


B Time to Death in Patients with pre-specified Acute Kidney Injury

C. Relative Risk of 28 day mortality among all the Patients and in the three prespecified strata

		Control arm	Bicarbonate arm	Absolute difference in % (95%CI)	P-value	P-value for heterogeneity
AKIN	0-1	47/104 (45)	45/103 (44)	 -1,5 (-16.0;13.0)	0.828	0.023
	2-3	57/90 (63)	42/92 (46)	 -17.7 (-33.0;-2.3)	0.017	
AGE	<65	42/94 (45)	32/89 (36)	 -8.7 (-24.0;6.5)	0.229	0.003
	>=65	62/100 (62)	55/106 (52)	 -10.1 (-24.5;4.3)	0.143	
SEPSIS	NO	39/79 (49)	30/72 (42)	 -7.7 (-24.9;9.5)	0.343	0.212
	YES	65/115 (57)	57/123 (46)	 -10.2 (-23.7;3.3)	0.116	
All patients		104/194 (54)	87/195 (45)	 -9,0 (-19.4;1.4)	0.076	

Figure 3. Cumulative use of renal-replacement therapy from enrolment until day 28 in the control and bicarbonate arms in Patients with pre-specified Acute Kidney Injury



Effectiveness of sodium bicarbonate infusion on mortality in septic patients Intensive Care Medicine (nov 2018) with metabolic acidosis

Zhongheng Zhang^{1*}, Carlie Zhu², Lei Mo³ and Yucai Hong¹

No significant mortality effect in the overall population (n=1718) of Sodium Bicarbonate
Sodium Bicarbonate infusion was associated with improved survival outcome in septic patients with AKI ≥2 and pH < 7.2.

marks follow a logarithmic scale. AKI acute kidney injury, GI gastrointestinal, HR hazard ratio

Take Home Message (from Bicar-ICU)

1. Bicarbonate did not significantly decrease day-28 mortality or the presence of at least one organ failure at day-7 in the overall population with severe metabolic acidosis (pH≤7.20)

2. Bicarbonate infusion decreased the need for renalreplacement therapy (52 vs 35%, p<0,01)

3. In the a priori stratum of patients with acute kidney injury, infusion of bicarbonate resulted in fewer deaths by day-28 (63 vs 46%, p=0,017)

Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial

Samir Jaber, Catherine Paugam, Emmanuel Futier, Jean-Yves Lefrant, Sigismond Lasocki, Thomas Lescot, Julien Pottecher, Alexandre Demoule, Martine Ferrandière, Karim Asehnoune, Jean Dellamonica, Lionel Velly, Paër-Sélim Abback, Audrey de Jong, Vincent Brunot, Fouad Belafia, Antoine Roquilly, Gérald Chanques, Laurent Muller, Jean-Michel Constantin, Helena Bertet, Kada Klouche, Nicolas Molinari, Boris Jung, for the BICAR-ICU Study Group*

Thank you

- Published Online
- June 14, 2018
- http://dx.doi.org/10.1016/ S0140-6736(18)31080-8

See Online/Comment

- http://dx.doi.org/10.1016/ 50140-6736(18)31305-9
- *The BICAR-ICU study investigators are listed in the appendix
- Saint Eloi ICU (Prof S Jaber MD, A de Jong MD, F Belafia MD,
- Prof G Chanques MD) **and** Département de Médecine
- Intensive et Réanimation (V Brunot MD,
- Prof K Klouche MD,
- Prof B Jung MD), Montpellier
- University Hospital, PhyMedExp, INSERM, CNRS, Montpellier, France; AP-HP, Département Anesthésie et Réanimation, Höpital Beaujon, Hôpitaux Universitaires Paris Nord Val de Seine, Paris, France
- (Prof C Paugam MD, P-S Abback MD);
- CHU de Clermont-Ferrand,
- Department of Perioperative Medicine, GReD,
- UMR/CNRS6293, University Clermont Auvergne, INSERM U1103, Clermont-Ferrand, France (Prof E Futier MD, Prof J-M Constantin MD);
- CHU de Nîmes, Département Anesthêsie et Réanimation,
- University of Montpellier-Nîmes, Nîmes, France (Prof J-Y Lefrant MD, L Muller MD); CHU d'Angers,
- Réanimation Chirurgicale, Angers, France (Prof S Lasocki MD); AP-HP,
- Département Anesthésie et Réanimation, Hôpital Saint Antoine, Paris, France (Prof T Lescot MD); Hôpitaux
- Universitaires de Strasbourg, Service d'Anesthésie-Réanimation Chirurgicale-
- Université de Strasbourg, Fédération de Médacine
- Fédération de Médecine
- Translationnelle de Strasbourg, Strasbourg, France